
Oil & Natural Gas Projects
Exploration and Production Technologies
An Ecological Framework to Evaluate Impacts of E&P Releases
FEW0067
Program
This project was funded through DOE's Natural Gas and Oil Technology Partnership
Program. The program establishes alliances that combine the resources and experience
of the Nation's petroleum industry with the capabilities of the national laboratories
to expedite research, development, and demonstration of advanced technologies
for improved natural gas and oil recovery.
Project Goal
The goal is to develop a general framework within which ecological risk assessments
can be conducted at an ecosystem or ecoregion scale. The specific purpose of
this research is to investigate the role of size and spatial distribution of
small impacted or contaminated sites to the larger ecosystem or ecoregion.
Performer
Lawrence Livermore National Laboratory (LLNL)
Livermore, CA
Oak Ridge National Laboratory (ORNL)
Oak Ridge, TN
Project Results
In this project, models have been implemented using an object-oriented programming
structure. The structure of the template model consists of a hierarchical set
of classes, with each class containing a number of objects. Within the ecosystem
class (which keeps track of the initial conditions and climatic variables) is
a species class and a landscape class. The landscape class contains a basic
landscape disturbance grid upon which the species class will interact. Simulations
that include prescribed burning and grazing occur on the background of a dynamic
landscape. Map layers in the geographic information system (GIS) serve as landscapes
for the model.
ORNL also has developed two stochastic models to describe the spatial distribution
of brine spills. The first model attempts to produce spills based on typical
well configurations. The second model is a simple statistical model that produces
a specified spatial distribution of spills. ORNL is currently running simulations
of the population model using the spill generator models.
Benefits
The results of this research are intended to support PERF (Petroleum Environmental
Research Forum) 99-01 in developing a protocol for conducting ecological risk
assessments at the ecosystem or ecoregion scale and to develop criteria for
the consideration of size of impacted sites in ecological risk assessments.
In addition, the project will further enhance the capabilities of LLNL and ORNL
through the expansion of shared and cross-platform GIS services, which may be
of future benefit to DOE.
The project will reduce the necessity of performing Ecological Risk Assessments
(ERAs) at small, remote sites; significantly decrease the cost of ecological
evaluations; and eliminate unnecessary site cleanup and restoration.
Background
In the past decade, concern has increased over the environmental impacts of
contaminants on ecological receptors. State and Federal agencies are increasingly
requiring ERAs to estimate such impacts. These ERAs can be complex, relying
on overly conservative assumptions to extrapolate laboratory toxicity data to
field sites, and often consider areas that are too small to be ecologically
relevant. Through the operation of upland exploration and production (E&P)
sites, the petroleum industry has thousands of sites that may be impacted by
the release of petroleum-related products (primarily petroleum compounds and
brine fields) to various degrees. Many of these sites also will undergo closure
in the near future. Due to their remote location, it is possible that ecological
receptors, not human health, will drive the risk at these sites. Conducting
traditional ERAs and any subsequent cleanup/site restoration could be quite
costly industry-wide. These costs would be particularly burdensome to small,
independent operators that typically do not have substantial resources. And
such efforts actually may be unnecessary, as many areas impacted by petroleum-related
products within E&P sites are small and localized within the context of
a larger site. Conducting ecotoxicolgically-based ERAs at each of these isolated,
impacted areas may provide a misleading estimate of the true impact on populations
and communities at larger, more ecologically meaningful scales. This project
was concurrent with FEW0054 at LLNL and ORNL.
Project Summary
The TGPP in northern Oklahoma was selected as a representative E&P facility.
An evaluation of the vegetation biomes of existing E&P facilities showed
various grassland prairies and savannas to represent a significant percentage
(>40% grassland, >7% tallgrass prairie) of these sites. The development
of a protocol for the creation and data population of a GIS for E&P sites
was successfully completed. This protocol will greatly facilitate the creation
of a cost-effective GIS specifically for evaluating ecological impacts at E&P
sites. Layers developed for GIS include Digital Ortho Quarter Quad photos, National
Landscape Characterization (NALC) data (NALC, Landsat multispectral scanner),
Normalized Difference Vegetation Index developed from NALC data, well locations,
soil survey, AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) hyperspectral
flight lines, low-resolution vegetation, prescribed burn history, bison pastures,
and land ownership.
The results of the review of available population models, the fragmentation,
patch size, and home-range literature suggest that size criteria will be constrained
by the general context of the facility and by the general type of endpoint species
present. Additional onsite global positioning satellite data were collected
for well location, well pad area, and brine and oil spill locations and size
under FEW0054. ORNL completed the calculation of the preliminary site statistics
using the GIS developed for the TGPP in Oklahoma. The site statistics calculated
include total reserve area, pasture data (numbers, sizes, fencing lengths),
length of and area covered by roads, length of streams, number and area of wells,
burn rate, brine spill number and area, and vegetation coverage (woodland, savanna,
prairie, pasture, crop, and other). These data will be used to support the modeling
effort.
LLNL and ORNL completed the a simulation model to evaluate the effect of size
and distribution of spills and habitat patches on ecological populations at
the TGPP. The goal was to develop a generic, or template, model that could be
used to determine frequency, size, and distribution of spills that would lead
to a density of herbivores and/or predators that can be sustained. In addition,
these spatially explicit models could be used to quantify how the effects of
petroleum-related habitat loss differs for species with different life history
attributes, mobility, and spatial habitat requirements.
LLNL has developed an individual-based model for simulating territorial species
and their relationship to the spatial environment (herbivore-resource relationship)
and to predators. The first implementation of the model describes the birth,
death, aging, feeding, and movements of individual prairie voles on a spatial
grid consisting of cells roughly corresponding to the home range of the vole
and containing vegetation that changes in mass due to production and herbivory.
Simulations have been performed to investigate the influence of overall habitat
size and the patchy removal of habitat (habitat fragmentation at a scale similar
to that experienced by E&P activities) on vole distribution and persistence.
Preliminary results show a positive correlation between the overall size of
the habitat and vole persistence. Fragmentation appears to have a positive influence
on prairie vole distribution and persistence by delaying the time to overgrazing.
A summary of the literature on the life-history attributes of the short-eared
owl (a predator of the prairie vole) is near completion. This information will
be used in the near future to develop a predator-prey simulation of short-eared
owl-vole dynamics.
ORNL has focused on the development of a population model that uses a habitat
suitability index as the basis for representing spatial variation in habitat.
The population model recognizes six activities that individuals engage in during
their lives: pre-breeding, mating, post-mating, birthing, rearing offspring,
and dispersal. The model has been parameterized for the American badger and
will be generalized in the future to represent other species of prairie birds
and mammals. ORNL has created a generic landscape module to simulate vegetation
transitions due to burning and grazing, and LLNL has created a vegetation growth
module for use in the template model and created a basic vegetation grid from
the GIS vegetation layer.
Current Status
The project is complete. This was a joint partnership project with ORNL under
FEAC321.

Wildflowers blooming in the Tallgrass Prairie Preserve in northern Oklahoma.
Photo by Harvey Payne, Director, Tallgrass Prairie Preserve.
Project Start: June 12, 2000
Project End: September 30, 2004
Anticipated DOE Contribution: $500,000
Performer Contribution: $0
Other Government Organizations Involved
Oak Ridge National Laboratory
Contact Information
NETL - Jesse Garcia (jesse.garcia@netl.doe.gov or 918-699-2036)
LLNL - Tina Carlsen (carlsen1@llnl.gov or 925-422-7103)
|