
Oil & Natural Gas Projects
Exploration and Production Technologies
An Integrated Approach to Assessing Seismic Stimulation (PARTNERSHIP)
FEW 5227/02FE09
Program
This project was funded through DOE's Natural Gas and Oil Technology Partnership
Program. The Partnership Program establishes alliances that combine the resources
and experience of the nation's petroleum industry with the capabilities of the
national laboratories to expedite research, development, and demonstration of
advanced technologies for improved natural gas and oil recovery.
Project Goal
The project goal is to determine the validity and applicability of seismic stimulation
of oil reservoirs.
Performers
Lawrence Berkeley National Laboratory (LBNL)
Los Alamos National Laboratory(LANL)
Project Results
Field, lab, and modeling efforts have validated the existence and validity of
seismic stimulation. Stimulation has been shown to work in a wide variety of
formations where seismic attenuation is relatively low. It does not appear to
be effective in highly attenuative formations.
Benefits
Seismic wave stimulation technology has the potential to provide a low-cost
procedure for enhancing oil recovery in mature fields and making it economically
feasible to return abandoned wells to production as well as increase production
in currently producing fields. Tests of the technology indicate that seismic
stimulation technology potential is greatest in fields with a high water cut
and large amounts of immobile oil, making the technology exceptionally suitable
for mature domestic oil fields. This work, coupled with lab and theory, will
allow producers to make intelligent choices of stimulation procedures
Background
At the present time a variety of mechanisms has been proposed for the effect,
but there is not a clear understanding of the phenomenon. Needed are controlled
field tests that measure the seismic energy of the sources at the depth of stimulation
and tight monitoring on changes in production fluids. Coupled with the lab and
theory efforts, a comprehensive understanding of the technology can be achieved.
Project Summary
During the last year several critical results were obtained that indicate that
seismic stimulation may be a viable technology in providing increased production.
This was achieved through actual measurements in the field during stimulation
with pressure-pulsing technology and through improved modeling and theory. This
is supported by observation of actual production increases of 10 - 15 percent
that can be correlated with stimulation. Also, as the technology is being implemented
by more and more companies, researchers are learning why it is working and at
which frequencies it will work as a function of rock type.
From a theoretical formulation of deformation and wave propagation in elastic
porous media containing two immiscible fluids, including the effect of inertial
coupling, a dispersion equation for the dilatational waves in multi-fluid porous
media was derived to describe how wave natural frequency depends on wave number.
To gain insight into the fluid-dependent nature of these three waves, numerical
simulations were performed to investigate the effect of fluid saturation and
natural frequency on the phase velocity and attenuation coefficients containing
either water and gas or water and oil. The attenuation behavior of the P-wave
was found to be sensitive to the presence of different pore fluids.
The laboratory experiments in the Dynamic Stress Stimulation Laboratory (DSSL)
at LANL have demonstrated at least four types of stimulated flow behavior. Qualitative
agreement also has been confirmed between the lab/theoretical parameters and
those of several field stimulation tests performed under this project. In addition
to the experiments listed here, project efforts also have focused on modifications
to the DSSL apparatus, refinements to the experimental procedures, and improvements
to the fluid delivery and stress/strain measurement systems.
Current Status (July 2005)
The project is in the final year of work. Final lab tests and modeling are being
completed. The technology is being transferred to industry for application.
Publications
Lo, W.-C., Sposito, G., and Majer, E.L., Immiscible two-phase fluid flows in
deformable porous media, Advances in Water Resources, 25(8-12), pp. 1105-1117,
LBNL-50624, 2002.
Roberts, Peter M., Esipov, Igor B., and Majer, Ernest L. Elastic Wave Stimulation
of Oil Reservoirs: Promising EOR Technology? The Leading Edge, 22(5), pp. 448-453,
2003.
Project Start: March 27, 2002
Project End: March 26, 2006
Anticipated DOE Contribution: $ 1,223,000
Performer Contribution: $ 1,930,000
Contact Information
NETL - Rhonda Jacobs (rhonda.jacobs@netl.doe.gov or 918-699-2037)
LBNL - Ernest Majer (elmajer@lbl.gov or 510-486-6709)
LANL - Peter Roberts (proberts@lanl.gov or 505-667-1199)

Production response to seismic stimulation. (chart courtesy of ASR Inc.)
|