
Oil & Natural Gas Projects
Exploration and Production Technologies
Lower-Cost Methods for Enhanced Oil Recovery Via Surfactant Flooding
DE-FC26-01BC15362
Program
This project was selected in response to DOE's Oil Exploration and Production
solicitation DE-PS26-01NT41048 (focus area: Enhanced Oil Recovery, or EOR).
The goal of the solicitation was to promote innovative methods for cost-effective
surfactant flooding.
Project Goal
The goal of this project was to identify new, potentially more cost-effective
surfactant formulations for Improved Oil Recovery (IOR). The project emphasized
searching for surfactants that can reduce the interfacial tension (IFT) between
surfactant solutions and oil to ultra-low levels and at a low cost.
Performer
California Institute of Technology
Pasadena, CA
Project Results
The project used a combined experimental and theoretical approach to identify
new surfactant chemistries for IOR. These newer products (not available commercially
during previous intense research in chemical EOR more than two decades ago)
offer performance advantages such as less sensitivity to salinity and temperature
for low IFT.
Benefits
This project benefits the industry by identifying a wider spectrum of surfactant
products that may be useful for IOR. Having these alternatives offers more choices
and more competition (resulting in lower costs) for an oil company that is selecting
a surfactant for IOR.
The state and the public benefit of this research is that it provides further
impetus for the industry to practice chemical IOR and thereby increase domestic
oil supply. There also is a general benefit because the project approach is
a successful example for other researchers to follow where complementary chemical
molecular-level simulation studies are synergistic with the experimental chemistry
investigation and thus produce better results.
Background
This 3-year project began in September 2001 as an effort to identify more cost-effective
surfactants for IOR. The motivation for this study is that the oil industry
had a history from the previous "boom" period of the late 1970s and
early 1980s of developing chemical IOR in the laboratory and having moderately
successful technical field tests. However, its economics prevented widespread
commercial deployment of the technology, due in large part to the high cost
of the chemicals required for the process.
The project did identify promising new candidate formulations (based on alkyl
polyglycosides [APG] and alkyl propoxy sulfate [APS] surfactants). These more
recently available products offer key technical advantages and may in fact be
more economical in future commercial applications.
Project Summary
Significant accomplishments for this project include:
- Completion of a literature review to assemble current and new surfactant IOR
ideas.
- Development of new atomistic-level MD (molecular dynamic) modeling methodologies
to calculate IFT rigorously from first principles.
- Exploration of less computationally intensive meso-scale methods to estimate
IFT, Quantitative Structure Property Relationship, and cohesive energy density
calculations.
- Experiments screened many surfactant structures for desirable low-IFT and
solid-adsorption behavior.
- Further experimental characterization of the more promising new candidate
formulations (based on APG and APS) offer new choices of materials to incorporate
into IOR chemical formulations.
Current Status (May 2005)
Since the formal completion of the project, work continues on multiple papers
and publications that will document additional details of this effort to the
public domain. For example, there will be a paper presented at the 2005 SPE
Fall Meeting concerning the performance of the APS surfactants. Also, experiences
gained during the execution of this project were helpful in writing additional
chemical IOR proposals and securing further funding from DOE in this technical
area. There have been 4 presentations at American Chemical Society meetings.

These images illustrate the linkage between the experimental and theoretical
efforts of the project. The graphic on the left is a photograph of the image
seen in an instrument that measures IFT (spinning drop tensiometer). The graphic
on the right is an image taken from a computer simulation showing a surfactant
interacting with its alcohol co-surfactant at an oil-water interface.
Publications
Final Report: Lower-Cost Methods for Improved Oil Recovery (IOR) via Surfactant
Flooding, DOE Project: DE-FC26-01BC15362, October 2004.
Iglauer, S., Wu, Y., Shuler, P.J., Blanco, M., Tang, Y., and Goddard III,
W.A., "Alkyl Polyglycoside Surfactants for Improved Oil Recovery,"
SPE/DOE 89472, presented at the 2004 SPE/DOE 14th Symposium on Improved Oil
Recovery, Tulsa, OK, April 17-21, 2004.
Jang, S.S., Lin, S.T., Maita, P.K., Blanco, M., Goddard III, W.A., Shuler,
P.J.,and Tang, Y., "Molecular Dynamics Study of a Surfactant-Mediated
Decane-Water Interface: Effect of Molecular Architecture of Alkyl Benzene
Sulfonate," Journal of Physical Chemistry B, 108, 12130-12140, 2004.
Project Start: September 18, 2001
Project End: September 17, 2004
Anticipated DOE Contribution: $720,230
Performer Contribution: $180,058 (20% of total)
Contact Information
NETL - Paul West (paul.west@netl.doe.gov or 918-699-2035)
California Institute of Technology - William Goddard (wag@wag.caltech.edu
or 626-395-2731)
|