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Gas Turbine Need

The Reliability, Availability, and
Maintainability (RAM) technical area
within High Efficiency Engines and
Turbines (HEET) Program

encompasses the design of gas turbine

health management systems

The introduction of real-time
diagnostic and prognostic capabilities
on gas turbines can provide increased
reliability, safety, and efficiency

Opportunity exists to develop and
demonstrate advanced health
monitoring strategies at Clemson
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Project Objectives

Technical Objectives:

» Develop a real-time system monitoring algorithm capable of detecting and
Isolating the occurrence of anomalies, as well as predicting future degraded
operation for maintenance scheduling

* Numerically and experimentally demonstrate the health monitoring concept

Educational Objective:

* Involvement of undergraduate students through an “Undergraduate
Research Award” to promote the program's educational mission

» Preparation of graduate engineering students for employment in the gas
turbine industry
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Approach
« Open issues to be accomplished by research team in upcoming months
- Complete real-time data manipulation collaborating with Mathworks on “OPC” software
- Finish derivation of diagnostic and prognostic software strategies; resolve modeling issues

- Examine Mercury 50 operation at Clemson University and feasible modifications
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4. Diagnostics Module Design N |

5. Prognostics Module Design I
I
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6. Simulation and Experimental Testing — ! “ : : ||

-
B Completed 1 In progress Current
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Accomplishments

» Achieved a model-free trend checking diagnostic algorithm (12/03)

» Demonstrated real-time data streaming between the Mercury 50 gas turbine and
the Energy Systems Laboratory using Matlab OPC Interface (03/04)

» Created a compressor map of the Solar Mercury 50 gas turbine based on actual
blade geometry and experimental data (07/04)

» Undergraduate research group member completed HEET Summer Intern Program
at Solar Turbines, San Diego, CA (09/04)

o Established a sensory architecture of 28 signals for diagnostics/prognostics (12/04)
» Developed a dynamic (transient) model for the gas turbine (04/05)
 Created an initial methodology for the prognostics module (05/05)

 Verified and validated the dynamic model with limited experimental data (06/05)
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Technical Results — Research Overview

Gas Turbine
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Technical Results — Sensors and Data Acquisition
Configuration (Hardware)

* OPC (Olefor Process Control) is acommunication technology linking
different sensors types through a common software platform (Note: Oleisacity in France)

» Clemson University campus Ethernet connects the turbine and the research workstations

* The research workstations can communicate with two OPC servers, a machine server (installed
on the workstation) and a remote server (turbine host computer)
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Technical Results — Sensors and Data Acquisition
Configuration (Software)
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Technical Results - Analytical Gas Turbine Model

» Analytical/Empirical model estimates normal turbine operation

Real time model is a sequence of interconnected subsystems which describe the basic
components of a stationary gas turbine

» Physical and thermodynamic laws have been used to describe the system dynamics
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Technical Results - Analytical Model

 Thermodynamic analysis of the gas turbine is based on a modified Brayton cycle
- Compression (Compressor, points 1 to 2,2A)
- Heat addition (Recuperator, points 2A to 3)
- Heat addition (Combustion chamber, points 3 to 4)
- Expansion (Turbine, points 4 to 5)

« Analytical model will incorporate the shaft dynamics and the thermodynamic
relations during the turbine’s transient operation
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Technical Results - Experimental Model Validation

» Relevant sensor locations in Mercury 50 gas turbine are shown below

» To validate the mathematical model, comparisons between the analytical model and the
experimental results from the Mercury 50 gas turbine have been studied
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Technical Results - Experimental Model Validation

» Estimated and actual shaft speed comparison

* The overall behavior is well matched with some deviations between 100<t<600 seconds

* Model corresponds to within 2% of the experimental data (Feburary 2, 2005)
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Technical Results — Experimental Model Validation

Estimated and actual power generated comparison

Sequential loading is started 400 seconds after start up; both steady state and start up phases
are well predicted by the mathematical estimates
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Technical Results - Experimental Model Validation

» Estimated and actual fuel flow rate comparison
« A good match is obtained between the experimental data and the estimated fuel flow

» Model corresponds to within 3% of the experimental data at steady state (February 2, 2005);

transient stage is under investigation to decrease fuel flow decay after peak
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Technical Results — Experimental Model Validation

» Estimated and actual turbine rotor inlet temperature
» Steady state behavior is well matched, start up under investigation
» Model corresponds within 3% of the experimental data during steady state (Feburary 2, 2005)
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Technical Results — Diagnostics Overview

» Diagnostics detect eminent fault occurrences by analyzing sensory information
 Diagnostic techniques can be generally categorized into model-free and model-based methods

- In model-free methods, diagnostics are performed by directly analyzing the signals received
from the system and compare them to a certain predefined criteria

- Model-based methods use an analytical or empirical system model to estimate behavior
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Technical Results — Selected Strategy
 Limit checking is performed for both the signal and its derivative as a preliminary step

* Due to the squared innovations (estimation error), v , the Chi-square hypothesis test is selected
for its robustness in detecting deviations

» A model-free stochastic framework including time series signal modeling, fault dictionary
creation, and signal matching techniques is selected for isolation

Derivative Calculation »| Signal and Derivative Checking Limit Checking (Model-Free)
/ Reference Signals .
|_> (A priori data) g _’ﬁ_ Stochastic
Plant Time _— Framework
Signals =) ificati ; Fault Dictionary
Classification Series { (Model-
1 : Observed Signals . ATEIYETS . Statistical Signal Free)
(data streaming) e e Matching
Model Innovations
Estimate Innovations Generation > Chi-square Hypothesis Test Analysis
(Model-Based)
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icS

t

is measured to predict the behavior of the signal and

>Y,... tooptimize alarm generation

* Levels of alarms are set according to the difference between the safe limit and the
signal value ‘Y—YSalfe

* Accessible parameters signals are compared to a bounded range ¥ . <Y <Y

* The signal time derivative

Technical Results — Model-Free Limit Checking Diagnos
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Technical Results — Time Series Principles

» Time series is a stochastic technique combining both time and frequency domain analysis in a
single methodology

—e Data transformation (2) by examining difference between two data points, Y, = X,,; — X, isa
preliminary step for data exhibiting long memory (slow dynamics)

* A direct indication of the system’s impulse response is given by the Autocorrelation Function (3) —

(i.e. Correlation between signal’s values at different time intervals,Y, and Y. )

* The signal spectrum (4) transports the analysis to the frequency domain; its relation to the
Autocorrelation Function bridges the time and frequency domains
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Technical Results — Model-Free Diagnostics (Matching)

« Transformations are performed to obtain a stationary Autocorrelation Function

» The Autocorrelation Function (dynamic feature) and the Deterministic Trend (static
feature) of the plant signal are the signal features used for the matching criteria

» Appropriate statistical matching algorithms will be applied

» Same procedure can be applied to the residuals of gas turbine model and actual signals
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Technical Results — MFD Sample Autocorrelation
Matchlng Results gNo Failure)
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* Since the two autocorrelation functions are similar
(~100% similarity based on a 95% threshold Limit),
the observed signal corresponds to the “No
Failure” signal
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Technical Results — MFD Sample Autocorrelation
Matching Results (Excessive Noise Fault)
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Technical Results — Model-Based Diagnostics (Innovations)

» Under the null hypothesis of “No Failure”, the innovations should be a “white noise” signal

« Sometimes the innovations exhibits an interdependence in spite of the “No Failure” condition. A
Time Series model such as

U, =iag +at +a,t’ +..+at"+gUy +..+ U HZ H0Z o +..+ 6,7,

________________________________________________________________________________________

Deterministic Trend Auto Regressive part White Noise Moving Average part

IS introduced to obtain Gaussian independent innovations
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Squared Normalized Innovations

Technical Results — MBD Sample Innovations
Results (No Failure)

' 95% Confidence Limit Threshold
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* Since the threshold violation is less than 5% (actually

4.4%) with a maximum duration of 40 seconds

(window length), a test which requires multiple failure
windows fails to reject the white noise hypothesis
results in a “No Failure” condition
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Technical Results — Implementation of MBD Fault Detection

 The innovations calculation is implemented in real-time to investigate the existence of a
deviation from normal operation

» Statistical analysis includes the Chi-Square test for each channel and a joint probability calculation

« Limit checking is applied in parallel fashion to the illustrated architecture
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Statistical Analysis
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j,) and
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Channel n
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Technical Results — Implementation of Model-Free and

Model-Based Isolation

» Upon detection, a detailed analysis is implemented incorporating model-free and model-based
isolation methods

» Isolation is achieved by referring to the Fault Dictionary instead of the “No Failure” reference

* Newly defined fault may be added to the Fault Dictionary (i.e. Learning Feature)
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Technical Results — Prognostic Overview

* Prognostic is the study of methods to predict the future values of a signal, variable,....
* Indynamic systems, performance prediction is based on the overall trends of the observed data

» Prognostic strategies can operate in a parallel manner to the diagnostics and utilize the same
available sensory information

PROGNOSTICS
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Sensor Trend .. E1s__t|mated Corrective Action i
Monitoring Analysis Flg?lirtg Recommendation |
|
|
1
Gas Real Time
Turbine Control DIAGNOSTICS
T TTTTTTTTTTT T T T TT T mmmmmmmmmmm—mm—m—mmmmmmmo
1 |
Analytical ! !
Emp?;ical | Fault Fault Fau'lt System :
Model i Detection Estimation Isolation Reconfiguration i
1 |
1 |
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Technical Results — Select Prognostic Methods

* Model free methods do not rely on a physical model but rather directly examine signals
- Statistical models use input/output data to analyze trends; requires a data base
- Time Series analysis may use auto regression and Kalman prediction techniques

* Analytical/Empirical models may be use to predict response

Prognostic Methods

Model Free Data :_ _____________ S ity T
Raw Physical | | Statistical Analysis : : |
Gas Turbine — Tuples o :
Data s .}; — Standard Deviation | | | Z I
. | =
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. = — Auto Regression -l"-l* ?) |
% a=xaas | — Kalman Filtering : | z |1l R daf
Model Based Data . : L g : ecommendation
iri i - I J]
Empirical/Analytical Neural Networks I £ |
Model to . ! Artificial Intelligence || | I
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Trend Analysis Time To Failune
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Technical Results — Model Free Prognostic Methods

» Selection and evaluation of plant signals either individually and/or in various combinations
» Two proposed prognostic strategies for stationary gas turbines

- Statistical Analysis using standard deviation and a least squares method
with a graphical representation for display purposes

- Time Series with empirical models created based on past operating history;
used to predict future plant behavior

Bh B - Standard Deviation i
ase Flane - Least Squares Model | :

Signal Set

VoY) [P

Signal Selection

Predict Graphical Recommended Action
Threshold Violation Representation

Empirical Model _
Creation Forecasting

Time Series Analysis

Clemson Presentation 10-19-2005 J.W.




Technical Results — Model Free Statistical
Analysis Prognostic Method

» Avariety of gas turbine signals are collected

and stored at regular time intervals (,.t,,..t,)
yl(tl) yl(tz) Y1 (tn)

y () = yz:(tl) yzftz) - yzftn) Raw Data
ym(tl) ym (tz) ym(tn)
&00
» The standard deviations of the signals are ¥
calculated, s, (j=1,....m) : )
: i : : g 0.
» The signals dominant trends are obtained using §
a minimized least squares method, < ; N
o Tuples centered on polynomial trend (using 00 : _
the minimized least square equation) may be 0o - . 2
. . 5 ; 2 15
drawn with 2s, as the radius e : 1 o
: : - 0
« Atrend may be projected to predict threshold Gearbox Vibration [gE] -y 00 time [s]

\(i_olation in the future time interval

Clemson Presentation 10-19-2005 J.W.



Technical Results — Time Series in Prognostics

» Time series methods can fit parametric models to select signal time histories; these methods
are powerful in handling misleading stochastic trends and signal interdependences

 Based on a time series model, a forecast technique can predict the signal’s future behavior
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Summary
« Research Achievements

- Real time data logging of the Mercury 50 gas turbine was achieved
- A set of 28 sensors out of 180 sensors has been selected for analysis

- A generic mathematical model based on a thermodynamic Brayton cycle
analysis was developed

- Model has been initially validated using the acquired turbine data
- Two diagnostics approaches have been developed for stationary gas turbines

- Created a statistical framework for prognostics

« Present Activities
- Complete work on diagnostic and prognostic modules

- Experimentally/numerically implement diagnostic/prognostic algorithms
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Speed (RPM)

Assortment of Mercury 50 start-up data

Two research team members

Mercury 50 Turbine Section
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